3.38 \(\int \frac{a+b \cos (c+d x)}{(e \sin (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=96 \[ -\frac{2 a E\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{e \sin (c+d x)}}{d e^2 \sqrt{\sin (c+d x)}}-\frac{2 a \cos (c+d x)}{d e \sqrt{e \sin (c+d x)}}-\frac{2 b}{d e \sqrt{e \sin (c+d x)}} \]

[Out]

(-2*b)/(d*e*Sqrt[e*Sin[c + d*x]]) - (2*a*Cos[c + d*x])/(d*e*Sqrt[e*Sin[c + d*x]]) - (2*a*EllipticE[(c - Pi/2 +
 d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(d*e^2*Sqrt[Sin[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0731285, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2669, 2636, 2640, 2639} \[ -\frac{2 a E\left (\left .\frac{1}{2} \left (c+d x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{e \sin (c+d x)}}{d e^2 \sqrt{\sin (c+d x)}}-\frac{2 a \cos (c+d x)}{d e \sqrt{e \sin (c+d x)}}-\frac{2 b}{d e \sqrt{e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])/(e*Sin[c + d*x])^(3/2),x]

[Out]

(-2*b)/(d*e*Sqrt[e*Sin[c + d*x]]) - (2*a*Cos[c + d*x])/(d*e*Sqrt[e*Sin[c + d*x]]) - (2*a*EllipticE[(c - Pi/2 +
 d*x)/2, 2]*Sqrt[e*Sin[c + d*x]])/(d*e^2*Sqrt[Sin[c + d*x]])

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{a+b \cos (c+d x)}{(e \sin (c+d x))^{3/2}} \, dx &=-\frac{2 b}{d e \sqrt{e \sin (c+d x)}}+a \int \frac{1}{(e \sin (c+d x))^{3/2}} \, dx\\ &=-\frac{2 b}{d e \sqrt{e \sin (c+d x)}}-\frac{2 a \cos (c+d x)}{d e \sqrt{e \sin (c+d x)}}-\frac{a \int \sqrt{e \sin (c+d x)} \, dx}{e^2}\\ &=-\frac{2 b}{d e \sqrt{e \sin (c+d x)}}-\frac{2 a \cos (c+d x)}{d e \sqrt{e \sin (c+d x)}}-\frac{\left (a \sqrt{e \sin (c+d x)}\right ) \int \sqrt{\sin (c+d x)} \, dx}{e^2 \sqrt{\sin (c+d x)}}\\ &=-\frac{2 b}{d e \sqrt{e \sin (c+d x)}}-\frac{2 a \cos (c+d x)}{d e \sqrt{e \sin (c+d x)}}-\frac{2 a E\left (\left .\frac{1}{2} \left (c-\frac{\pi }{2}+d x\right )\right |2\right ) \sqrt{e \sin (c+d x)}}{d e^2 \sqrt{\sin (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.114907, size = 58, normalized size = 0.6 \[ -\frac{2 \left (a \cos (c+d x)-a \sqrt{\sin (c+d x)} E\left (\left .\frac{1}{4} (-2 c-2 d x+\pi )\right |2\right )+b\right )}{d e \sqrt{e \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])/(e*Sin[c + d*x])^(3/2),x]

[Out]

(-2*(b + a*Cos[c + d*x] - a*EllipticE[(-2*c + Pi - 2*d*x)/4, 2]*Sqrt[Sin[c + d*x]]))/(d*e*Sqrt[e*Sin[c + d*x]]
)

________________________________________________________________________________________

Maple [A]  time = 1.76, size = 153, normalized size = 1.6 \begin{align*}{\frac{1}{ed\cos \left ( dx+c \right ) } \left ( 2\,\sqrt{1-\sin \left ( dx+c \right ) }\sqrt{2+2\,\sin \left ( dx+c \right ) }\sqrt{\sin \left ( dx+c \right ) }{\it EllipticE} \left ( \sqrt{1-\sin \left ( dx+c \right ) },1/2\,\sqrt{2} \right ) a-a\sqrt{1-\sin \left ( dx+c \right ) }\sqrt{2+2\,\sin \left ( dx+c \right ) }\sqrt{\sin \left ( dx+c \right ) }{\it EllipticF} \left ( \sqrt{1-\sin \left ( dx+c \right ) },{\frac{\sqrt{2}}{2}} \right ) -2\,a \left ( \cos \left ( dx+c \right ) \right ) ^{2}-2\,b\cos \left ( dx+c \right ) \right ){\frac{1}{\sqrt{e\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x)

[Out]

(2*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*EllipticE((1-sin(d*x+c))^(1/2),1/2*2^(1/2))*a-
a*(1-sin(d*x+c))^(1/2)*(2+2*sin(d*x+c))^(1/2)*sin(d*x+c)^(1/2)*EllipticF((1-sin(d*x+c))^(1/2),1/2*2^(1/2))-2*a
*cos(d*x+c)^2-2*b*cos(d*x+c))/e/cos(d*x+c)/(e*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \cos \left (d x + c\right ) + a}{\left (e \sin \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)/(e*sin(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt{e \sin \left (d x + c\right )}}{e^{2} \cos \left (d x + c\right )^{2} - e^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(-(b*cos(d*x + c) + a)*sqrt(e*sin(d*x + c))/(e^2*cos(d*x + c)^2 - e^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a + b \cos{\left (c + d x \right )}}{\left (e \sin{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))**(3/2),x)

[Out]

Integral((a + b*cos(c + d*x))/(e*sin(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \cos \left (d x + c\right ) + a}{\left (e \sin \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))/(e*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)/(e*sin(d*x + c))^(3/2), x)